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Abstract

In this paper, we use a genetic algorithm in
combination with a form of simulated annealing
to search for DAGs representing linear causal
systems.  In previous work (Harwood and
Scheines, 2002), we showed that a genetic
aigorithm search based on the Bayes Information
Criterion can substantially improve on the
constraint based approach of Spirtes, Glymour,
and Scheines (2001), especially at sample’ sizes
as low as 100. Here we ultimately score models
with the BIC but vary the penalty for model
complexity to increase population diversity. We
do a form of simulated annealing on the
complexity penalty itself, and show that the
results surpass those obtained previously, in both
speed and expected accuracy. The complexity
penalty is initially set very low to produce a set
of models perhaps more complex than the true
model. We then restrict the search space to
models with only adjacencies in the union of the
models in the top tier from the previous
generation.  This exponentially reduces the
remaining search space, allowing us to search it
much more exhaustively.  Over time, the
algorithm periodically makes the complexity
penalty stricter which further specializes the
search space. We present the algorithm and
show its reliability on simulation studies of -
models with up to 30 variables, and sample sizes
as small as 100.

0. Introduction

Bayesian Networks and Structural Equation Models are
powerful tools used throughout statistics, economics, and
the social sciences to parameterize causal hypotheses.
Searching for the set of causal Directed Acyclic Graphs
(DAGs) that best explain the observed data is difficult due
to the exponential growth of the search space as a
function of the number of variables measured. When an
appropriate score is available and the search space is
small enough to search thoroughly, scoring based
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searches (Cooper, 1999) can be highly accurate. When
the search space is large, these tend to be thwarted by
local maxima. By wusing local decisions about
independence (or some other constraint) to sequentially
cut down the search space, constraint-based searches
(Spirtes, Glymour, and Scheines, 2001) are dramatically
more efficient, but susceptible to small early mistakes that
can expand into large mistakes that cannot be repaired
without backtracking, a move which tends to undermine
the gain in computational efficiency. In this paper, we .
present an algorithm that combines the advantages of both
constraint propagation and scoring based search. We use
a genetic algorithm to do a massive parallel scoring
search over patterns (equivalence classes of DAGs; Pearl,
2000), but we also use a form of simulated annealing to
achieve dramatic increases in speed similar in spirit to
those achieved by constraint-based searches. Our method
of annealing sequentially increases the penalty on model
complexity in the BIC score, while pruning the search
space by eliminating models with adjacencies that we can
safely assume do not exist in the real model. Because the
algorithm begins with a score more lenient toward
complex models than the BIC score, it starts out very
conservative with respect to the adjacencies thrown out.
Nevertheless, each adjacency thrown out reduces the
search space exponentially.

In previous work (Harwood and Scheines, 2002), we
presented the SEMGA, a genetic algorithm for Structural
Equation Models with a BIC scoring metric. The
SEMGA relied on multiple independent searches, each
with a slightly different complexity penalty, and
dramatically improved on the accuracy of the PC
algorithm (Spirtes, Glymour, and Scheines, 2002) for
samples of size 100 and models with 20 to 30 variables.
We sketch the SEMGA and show how applying a form of
simulated annealing on model complexity improves the
speed substantially without any loss in performance.

In the remainder of the paper, we first give the briefest
possible overview of SEMs, causal search, genetic search,
and simulated annealing. Second, we give a brief
summary of the basic operation of the SEMGA to set the
stage for the annealing-SEMGA adaptation. Third, we
explain our version of annealing in more detail, and



explain the exponential savings in search obtained.
Fourth, the annealing-SEMGA is compared on a basis of
speed and accuracy to the standard SEMGA and the PC
algorithm on simulated data. Finally, we speculate on
improving the performance of the algorithm in the future.

1. Background
SEMs

Restricting ourselves to searching acyclic causal
structures with no latent common causes, a structural
equation model (SEM) is a parameterization of a directed
acyclic graph (DAG) in which the vertices are variables,
and in which each variable is assumed to be a linear
function of its direct causes and Gaussian noise. Linear
SEMs with variables expressed as a deviation from their

. . T
mean use the simple function Yj = b” Xj + gj, where Y;
represents response variable Y's value at individual i, X;

represents a vector of Y's parents values at individual i, b
represents a vector of the linear contributions to Y of each
of Y's parents. Finally, ¢ represents the residual or error
term. For a detailed explanation of DAGs, SEMs, and
linear SEMs see (Pearl 2000, or Bollen, 1989)).

Causal Search

The search space involved in DAG exploration is
astronomical. For a given number of variables n, there
are n(n—1) possible adjacencies that can exist in a graph.
2
Each of these adjacencies can be present in a given graph
or not making the number of possible adjacency structures
n(n=1)
:2 2
directed as long as no cycles are generated in the graph.
The size of the hypothesis space can be computed using a
recurrence relation (Harary, p.19) that sits between
n(n-1) n(n-1)
2 2 and 3 2 .
2.7149E158 unique DAGs can be constructed. In order to
deal with this space, two basic methods have been
proposed: Constraint based search and Scoring based
search.  Constraint based search (Spirtes, Glymour,
Scheines, 2001) uses independence relationships and
conditional independence relationships inferred from
observed data to determine the adjacencies and then
through constraint propagation orient as much of the
graph as possible. The main advantage constraint based
search algorithms offer is their relative speed, their ability
to handle latent variables, and the availability of
asymptotic consistency proofs. Two main drawbacks to
constraint based search: First, early decisions about

Each of these adjacencies can then be

Over a set of 30 variables,

" independence relations influence which independence

relations are even calculated later, so an incorrectly
assigned independence relation early has the potential to
propagate errors in the graph construction algorithm via
the set of later independence relations even considered.’
Second, in cases in which no DAG exactly entails the
independence relations judged to hold in the data, the
algorithm has no way to search for the DAG that sits
"closest” to the independence structure judged to hold.
Scoring based search has nearly the complementary set of
advantages and disadvantages. Because proximity among
DAGS, at least with respect to small perturbations in
adjacencies and/or orientation, translates terribly into
scoring proximity over DAGs, local maxima abound and
a search for the model or models with the best "score" is
hard. As a result, scoring based searches are typically
very slow.

Genetic Search

Genetic Algorithms, a subset of scoring algorithms,
search for multiple solutions simultaneously. Over time,
these solutions are blended with each other and are
maintained in a population based primarily on their
fitness. The hope is that traits found in the real model
improve fitness when included in an organism and are
thus imported into the population through probabilistic
discovery using crossover and mutation. All genetic
algorithms follow some sequence of decisions that can be
transformed into the following format, to mimic natural
selection.

1) Generate initial population

2) Select a “fit” subset of the organisms from the
present population

3) Produce offspring from crossing different “fit”

organisms
4) Mutate the current population
5) Returnto 2

Simulated Annealing

Annealing is the physical process of cooling a solution
slowly to allow crystalline structure to be uniform or
maintain super saturation. The standard machine learning
definition of simulated annealing denotes a probabilistic
hill climbing search where a temperature variable, that
decreases over time, governs the probability of moving
from one explored state to another. As temperature
decreases, the probability of exploring models scoring
less then the present state decreases. The motivation is to
avoid local maxima by allowing the search to be less strict
then hill climbing. The process of adjacency pruning we

! A variety of approaches have been taken to make a constraint-based
search more robust to early errors. In particular, see Shipley (2000).



describe here simulates simulated annealing (we couldn’t
resist). In the process we describe, the set of adjacencies
included in the possible edge set is analogous to the
temperature variable in a standard simulated annealing.
The set of possible edges both decreases monotonically
and constrains the range of possible mutations of any
given solution,

2. SEMGA

Overview

The SEMGA performs a causal search that can be
parameterized to search for causal graphs of varying
complexity by adjusting the complexity penalty in the
usual BIC score for a SEM. The remainder of this section
describes: the genomic representation of the model, the
scoring metric, and the form of the results returned by an
individual search. For a more detailed description of the
SEMGA, see (Harwood and Scheines, 2002).

Genomic Representation

Each DAG is represented by a genome or sequence of
traits, one for each possible edge between any two
variables found in the graph. The alleles are represented
by the values of the individual traits, where each trait
represents an edge's orientation or absence from the
model. For each variable in the model, a singular value
decomposition regression calculates a regression intercept
and a linear coefficient for each of the variable's direct
causes. Therefore, each genome/graph uniquely generates
a SEM given the observed data allowing each
representation to be scored.

Scoring (modified BIC)

The scoring function we employ is a modification of the
Bayesian Information Criterion (BIC), an approximation
of the posterior probability of a SEM given observed data.
The BIC score can be broken into two parts: First, a
measure of how similar the covariance matrix of the data
is to the covariance matrix implied by the model at the
ML parameter estimate. Second, a penalty based on the
complexity of the model, which in acyclic no-latent
variable SEMs is proportional to the number of
adjacencies in the graph, or patten. Our modification to
improve diversity is to treat the penalty contribution as a
parameter of the search. The benefit is that searches can
be biased away from edge omission, which allows us to
more conservatively generate sets of partial information,
i.e., sets of adjacencies to include in the search and their
complement to ignore.

Frontiers (result format)

Frontiers represent our set of best estimates of the model
that generated the observed data. Varied levels of
aversion to complexity are represented by each model in
the frontier. We can store frontiers representing an
individual search result or representing results for all
searches ever performed. The parameterization of the
individual searches influences what region of the frontier
will be specialized. A combined or general frontier of
organisms will thus contain models with a range in
complexity, i.e., the number of adjacencies, roughly
proportional to the range of the penalty factors used.

3. Annealing on Model Complexity

Consider the set of models in a general frontier, and
consider the set of adjacencies that occur in any model in
this frontier. We call this the set of edges included in the
general frontier, and its complement, i.e., the set of edges
that occur in no model in the general frontier, the set of
edges restricted by a general frontier. The algorithm
slowly makes this general frontier more specific as it
discovers information.

Initialization

In the beginning of our modified annealing search, no
partial information exists, and all edges are possible, that
1s, included in the initial frontier. The complexity penalty
for edges is initially set very low (a third of the standard
edge penalty found in the BIC) in-order to produce a
frontier very generous with respect to the set of edges
included. We execute three SEMGA searches, each
seeded differently, and construct our initial general
frontier from the union of the frontiers produced by these
three searches. This initial search is computationally
expensive, precisely because the search space has not yet
been pruned at all. At the completion of this initial stage,
we have a general frontier that is very conservative with
respect to the edges restricted. These edges are never
searched again; this restriction reduces the search space
exponentially in the number of edges restricted by the
frontier.

Iteration

We then continue the three SEMGA searches, but with an
edge complexity penalty increased from the previous
iteration.  Again, after the iteration is complete, we
recalculate the general frontier, and add any edges to the
set of restricted edges we found from previous iterations.
At each iteration the set of restricted edges grows, and
each successive search faces a dramatically smaller search
space, which can be searched more exhaustively than in



previous iterations. We are thus essentially annealing on
the complexity of the model, or the set of restricted edges.

Final Phase

Once the initial phase and several iterations have been
executed, we arrive at a single independent SEMGA
search with the standard BIC scoring metric. We shrink
the already small general frontier by removing the most
complicated element until we simplify the model. The
algorithm stops at the point when the most complicated
model found in the general frontier is the model with the
highest BIC score.

4. Simulation Results
20 Variable Datasets

The first set of graphs (figures 1 and 2) represent the
results of search run on 43 simulated data files. Each of
the data files had a sample of 100 drawn for 20 variables
produced from a randomly generated causal graph and
randomly parameterized SEM interpretation of that graph.
We divided the 43 studies into 4 groups based on the
average indegree of the randomly generated causal graph
in order to achieve meaningful results upon averaging.
The breakdown of the groups is approximately 11 models
from the following average indegree ranges: (0.25 - 1),
(1.05 - 1.3),(1.35-1.75), and (1.8 - 2.4)

Figure 1
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Figure 1 concerns the relative speed of the two searches.
The speed of the search depends on the number of models
visited, since the time for search is dominated by the time
to spent scoring models. The average quantity of models
scored in the annealing-SEMGA was significantly less
then in the standard SEMGA, even though the accuracy of
the procedure is as good or better. The number of models
scored by the annealing-SEMGA rises approximately
linearly with the model complexity, but the number
scored by the SEMGA plateaus after approximately 20
edges. This was primarily due to SEMGA exhausting the

bounded computational resources we had allowed. The
SEMGA calculates roughly the same quantity of graph
scores each execution unless the data was generated by an
extremely sparse graph. Our method of annealing takes
advantage of the reduction in the search space that results
from the number of edges restricted by the initial frontier.
For complex graphs, the annealing-SEMGA’s control of
its own annealing process allows it to dictate how hard it
will work on a problem, hence the increasing number of
models searched as the true model gets more complicated.

The four graphs in Figure 2 compare the accuracy of the
PC algorithm (Spirtes, Glymour, and Scheines, 2001),
standard SEMGA and annealing SEMGA. It plots the
accuracy of each algorithm on edge commission, edge
omission, orientation commission, and orientation
omission. In each case, the results list the percentage
error with respect to true pattern determined by the true
graph. If, for example, the output pattern contained 20
edges, 10 of which did not exist in the true pattern, then
the error percentage is the 10 divided by the number of
non-adjacencies in the true pattern, which is the number
the algorithm could have committed.

Ultimately, the annealing-SEMGA search returned results
as good or better than the SEMGA search, in much less
time. Both genetic algorithm searches radically
outperform the PC algorithm.

30 Variable Datasets

The second set of graphs (figure 3) represent the results of
search ran on 42 simulated data files, again with N=100.
The searches have been divided into 4 groups based on
average indegree in order to achieve reliable results upon
averaging. The breakdown of the groups is
approximately 10 models from the following average
indegree ranges: (0.63 — 0.9}, (0.93 - 1.07), (1.1 - 1.27),
and (1.33 - 1.5).

Figure 3 shows a comparison between the annealing —
SEMGA and the PC algorithm on accuracy of edge
commission, edge omission, orientation commission, and
orientation omission. The annealing-SEMGA dominates
the PC in all forms of error except for edge commission
on the most complex set of models; this error of 0.5%
translates to approximately two committed edges on
average. We were unable to obtain results for the
SEMGA algorithm at 30 variables, because the search had
difficulty terminating with the limited resources we gave
it.
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5. Future Work

The plans for the SEMGA’s future are threefold: First,
the search should extended to cyclic graphs and graphs
that contain latent variables. Second, new genomic
representations are being considered. There is a chance
that a representation of a causal ordering mapped over an
adjacency structure may encode the data better, allowing
for more intelligent crossover and mutation. This
representation has been used frequently in Bayesian
Network structure learning (deCampos, 1999). Third, the
algorithm assumes that the data we’ve seen is derived
from a linear system. Linear systems are not ubiquitous
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