

Philosophy

Methodology

Logic

Carnegie Mellon
Pittsburgh, Pennsylvania 15213

Online Causal Structure Learning

Erich Kummerfeld and David Danks

December 9, 2010

Technical Report No. CMU-PHIL-189

Online Causal Structure Learning

Erich Kummerfeld1 and David Danks1,2
1Carnegie Mellon University and 2Institute for Human & Machine Cognition

Pittsburgh, PA 15213
{ekummerf, ddanks}@andrew.cmu.edu

December 9, 2010

Abstract

Causal structure learning algorithms have focused on learning in ”batch-mode”:
i.e., when a full dataset is presented. In many domains, however, it is important
to learn in an online fashion from sequential or ordered data, whether because
of memory storage constraints or because of potential changes in the underlying
causal structure over the course of learning. In this paper, we present TDSL, a
novel causal structure learning algorithm that processes data sequentially. This
algorithm can track changes in the generating causal structure or parameters, and
requires significantly less memory in realistic settings. We show by simulation
that the algorithm performs comparably to batch-mode learning when the causal
structure is stationary, and significantly better in non-stationary environments.

1 Introduction
Over the past twenty years, a wide array of causal structure learning algorithms have
been developed that apply under a range of assumptions, and that have been success-
fully applied in many different domains [1–3]. All of these algorithms share a crucial
feature: they all process the data in a batch, rather than sequentially. This limita-
tion prevents these algorithms from being used in two, potentially common, types of
situations. First, they cannot be (feasibly) applied in low-memory contexts. Since the
standard algorithms take the full dataset as input, they cannot be used by computational
devices that are incapable of storing all of the data. For example, a sensor in a network
often will not have the memory capacity to store all of the incoming information, par-
ticularly if it receives data along multiple channels. Second, these algorithms are not
usable when the underlying causal structure or parameters change during the course of
data collection (at least, not in a straightforward manner1). The standard algorithms
assume all data are i.i.d. (or can be transformed into i.i.d. data); a dataset in which the
causal structure changes partway through is clearly not i.i.d. At the same time, a range

1If one suspects that a change occurred during data collection, then one could apply a changepoint de-
tection algorithm before doing any causal learning. This preprocessing step would have to be done by the
researcher, though; there would be no signal from the causal learning algorithm that such a step was required.

1

of online learning algorithms have been developed to handle both of these types of sit-
uations, but none of them are capable of doing causal learning. They have principally
focused on tracking the state of a system or variable over time, rather than learning a
causal structure (that potentially varies over time) that generates sets of (locally) i.i.d.
datapoints.

In this paper, we propose and assess the Temporal-Difference Structure Learning
algorithm (TDSL) — the first (to our knowledge) online causal structure learning algo-
rithm. The algorithm integrates several sophisticated tracking procedures with dynamic
learning of causal (graphical) structure. In the next section, we quickly survey some
related methods that provide some of the component pieces for our algorithm, though
they are each insufficient for the task of online causal structure learning. We then ex-
plain the TDSL algorithm in some detail, and present simulation evidence that it can
successfully learn causal structure in an online manner. In particular, TDSL automat-
ically detects when the underlying causal structure or parameters have changed, and
it tracks the causal structure in an efficient manner. Its memory requirements are also
fixed, and do not change as a function of the amount of input data (in contrast to batch-
mode algorithms that must store all data). At the same time, when there is a stable
causal structure generating the datapoints, the performance of the TDSL algorithm is
indistinguishable from a standard batch-mode causal structure learning algorithm. That
is, there is no cost to using TDSL in ”normal” causal learning situations. We close with
a discussion of future directions for the TDSL algorithm.

2 Related Work

2.1 Causal Learning Algorithms
Essentially all current causal structure learning algorithms output causal Bayesian net-
works or causal Structural Equation Models (SEMs). For simplicity, we will use
“causal models” throughout to refer to both types of structures. These learning al-
gorithms divide roughly into two distinct types: Bayesian/score-based procedures and
constraint-based ones. Bayesian learning algorithms aim to find the causal model M
that maximizes P (M |Data). In practice, one typically has uniform priors over the
possible causal models, and one assumes that the parameters are independent (in a pre-
cise technical sense), and so each causal model can be scored using a decomposable
measure based on P (Data|M) and the number of parameters in M [3,4]. Because the
number of possible causal models is super-exponential in the number of variables, how-
ever, it is typically impossible to perform an exhaustive search of all possible causal
models. Instead, one uses a greedy procedure that starts with a seed graph, scores
nearby neighbors, moves to the highest-scoring neighbor, and iterates until no higher-
scoring causal model can be found. If the greedy search is done properly, then it is
asymptotically reliable [3].

Outside of the causal learning context, Bayesian learning algorithms—or various
approximations to them—are frequently used for online learning because case-by-case
Bayesian updating yields the same output as batch-mode processing (assuming the
data are i.i.d.). In the cases of interest here, however, the underlying causal structure

2

can change, and so we do not necessarily want to have the same output as a batch-
mode algorithm. Moreover, even if we knew the structure would be stable over the
course of learning, greedy search algorithms are usable for online learning only if the
score for a graph can be computed using the current score of a neighbor plus the most
recent datapoint. If this cannot be done, then there is no principled way to determine
the appropriate score for a particular causal model when it is first considered. The
measures currently used in score-based causal model search algorithms do not have
this property, and so are not suitable for online causal learning.

A different approach to learning causal model structure is to leverage the fact that
every causal model—more precisely, every causal graph—predicts a pattern of (con-
ditional) independencies over the variables, though multiple causal models can predict
the same pattern. Constraint-based algorithms (e.g., [1, 2]) determine a minimal set of
(conditional) independencies in the data, and then find the set of causal models that best
predict those (conditional) independencies. All existing constraint-based algorithms
use traditional null hypothesis statistical tests to determine independencies from data,
but there is no requirement that they do so. Properly speaking, constraint-based algo-
rithms require only that some method be available that can provide the (conditional)
independencies, which could be null hypothesis statistical tests, or Bayesian statistical
tests, or even tracking algorithms that learn (conditional) independencies in real-time.

2.2 Realtime Tracking Algorithms
There are two primary methods for online tracking of some feature in an environment:
temporal-difference learning (TDL) and change-point detection (CPD). Crucially, nei-
ther method has been applied to tracking causal structure, and both require substantial
modifications to be suitable for it.

The classic TDL algorithm, TD(0) [5], provides a dynamic estimate Et(X) of a
univariate random variable X using a simple update rule: Et+1(X) ← Et(X) +
α(Xt − Et(X)), where Xt is the value of X at time t. That is, one updates the esti-
mate by α times the error in the current estimate. The static α parameter encodes the
learning rate, and must be chosen quite carefully (or somehow learned from the data).
If α is too small, then Et(x) will converge too slowly; if α is too large, then Et(x) will
be overly sensitive to noise of various types, even when the environment is stable. This
latter problem is a particular concern for causal structure learning, since causal struc-
tures frequently have indeterministic causal connections. In general, TDL methods are
good at tracking slow-moving changes in the environment, but perform suboptimally
during times of either high stability or dramatic change.

Both Bayesian [6] and frequentist [7] online CPD algorithms are effective at detect-
ing abrupt changes in the environment that indicate breaks between periods of stability.
To do so, however, these algorithms must store substantial portions of the input data;
the output of a Bayesian changepoint detector [6] for example is the probability of a
changepoint having occurred r timesteps ago, and so the algorithm must store more
than r datapoints. Furthermore, CPD algorithms assume a model of the environment
that has only abrupt changes separated by periods of stability. Environments that evolve
slowly but continuously will have their time-series discretized in seemingly arbitrary

3

fashion, or not at all. As a result, these changepoint detection algorithms are not well-
suited to online learning of causal structure.

3 Temporal Difference Structure Learning (TDSL) Al-
gorithm

Given a set of continuous variables V , we assume that there is, at each moment in
time, a true underlying causal model over V . A causal model will be specified by a
pair 〈G,F〉, where G denotes a directed acyclic graph over V , and F is a set of linear
equations of the form Vi =

∑
Vj∈parents(Vi)

aj · Vj + εi, where parents(Vi) denotes
the variables Vj ∈ G such that Vj → Vi, and the εi are normally distributed noise/error
terms. Such causal models are also known as recursive causal Structural Equation
Models (SEMs). We assume that the data are, at any point in time, generated in an
i.i.d. fashion from the true underlying causal model, though we do not assume that this
causal model is stationary through time.

At a high level, the TDSL algorithm is separated into three, functionally distinct
components.

Figure 1: Basic TDSL architecture

The Online Covariance Matrix Estimator (OCME) receives each datapoint sequen-
tially as input, and estimates a (possibly non-stationary) covariance matrix to provide
the “raw materials” for learning the causal structure. The Learning Rate Estimator
(LRE) tracks the divergence between recent datapoints and the estimated covariance
matrix to detect changes in the environment, or significant errors in estimation. The
Causal Model Learner (CML) takes the covariance matrix and learns the causal model
at that point in time. The gray arrow between LRE and CML represents the information
flow required for the probabilistic relearning scheduler described in Section 3.3 below.
The dashed arrow from CML to OCME indicates the possibility of using the current
estimated causal model to dynamically (and intelligently) influence the covariance ma-
trix estimation. That feature is currently not part of the TDSL algorithm, but will be
added in future research.

4

3.1 Online Covariation Matrix Estimation (OCME)
The OCME module performs the online updating of the sufficient statistics for causal
learning from observational data. In particular, OCME maintains an estimated covari-
ance matrix C over the variables V , and updates C in response to incoming datapoints.
Let N = |V | and M be the total number of datapoints observed. Because OCME does
not store any of the incoming datapoints, its memory requirements are only O(N2) for
the estimated covariance matrix, in contrast with O(NM + N2) memory for batch-
mode algorithms. OCME thus has a substantial memory advantage for the common
real-world situation of M >> N . OCME can also function as a stand-alone, single-
pass covariance matrix estimator for very large datasets.

For the OCME algorithm, let Xr be the r-th multivariate datapoint and let Xr
i

be the value of Vi for that datapoint. Because we do not assume a stationary causal
model, the datapoints must potentially be weighted differently (e.g., weighting more
recent datapoints more heavily after a change occurs). Let ar be the weight on the
r-th datapoint, and let br =

∑r
k=1 ak be the sum of the weights on each datapoint.

We denote the weighted average of Vi after datapoint r by µri =
∑r
k=1

ak
br
Xk
i . These

means can be computed in an online fashion using the update equation:

µr+1
i =

br
br+1

µri +
ar+1

br+1
Xr+1
i

The (weighted) covariance between Vi and Vj after datapoint r can then be proven
to equal CrVi,Vj

=
∑r
k=1

ak
br
(Xr

i − µri)(Xr
j − µrj). Because OCME is an online esti-

mation method, however, we need to translate this into an update rule. The resulting
update equation in terms of the current datapoint and the previous C can be derived to
be:

Cr+1
Xi,Xj

=
1

br+1
[brCrXi,Xj

+ brδiδj + ar+1(X
r+1
i − µr+1

i)(Xr+1
j − µr+1

j)]

where δi = µr+1
i − µri = ar+1

br+1
(Xr+1

i − µri). If ar = c for all r and some constant
positive real-valued c, then the estimated covariance matrix is identical to the batch-
mode estimated covariance matrix. If ar = αbr, then OCME tracks each covariance as
though one is using TD(0) learning for the covariance with a learning rate of α.

3.2 Learning Rate Estimator (LRE)
The LRE module tracks the “fit” between the current estimated covariance matrix and
the input data to determine the covariance matrix learning rates, represented in OCME
as datapoint weights (i.e., the ar’s). Specifically, the “fit” between each incoming dat-
apoint Xr and the current estimated covariance matrix Cr is given by the Mahalanobis
distance [8]:

DM = (Xr − ~µ)(Cr)−1(Xr − ~µ)T

where ~µ represents the current estimate of the means. A large Mahalanobis distance
for any particular datapoint could simply indicate an outlier; consistently large Maha-
lanobis distances over multiple datapoints imply that the current estimated covariance

5

matrix is a poor fit to the underlying causal model, and so new datapoints should be
weighted more heavily. The Mahalanobis distance is a univariate value, and so we
track it with a variant on TD(0) that we call Momentum-based Temporal-Difference
Learning (MTDL)2, which uses the same update rule as TD(0) but uses a varying αr
parameter:

Er+1(DM)← Er(DM) + αr(DM − Er(DM))

To set the αr value, we use TD(0) to track the mean error of the Er(DM) estimates;
this provides “momentum” to our learning because a single large (or small) error after
many small (or large) errors will have relatively little effect on αr. More precisely,
let Mr+1 ← Mr + β(DM − Er(DM)); note that β is not a function of r. We then
pass Mr through a gamma distribution cdf in order to scale it to the [0, 1] interval;
specifically, αr = gamcdf(|Mr|, k, θ) for given k, θ. Even for a random variable
with high variance, the momentum will be close to 0 if E(DM) ≈ µ(DM), since the
positive and negative errors will cancel each other out. By using strictly positive k
and θ, these small momentum values will then result in αr very near to 0, making this
tracking algorithm extremely stable. At the same time, systematic errors of the same
sign will causeM to quickly become large, resulting in a large αr, and enabling MTDL
to converge rapidly to new µ(DM).

In the context of the LRE, if the Mahalanobis distance is relatively stable, then
MTDL will have small errors and so αr will be small. If the Mahalanobis suddenly
grows for multiple datapoints (e.g., if the estimated covariance matrix suddenly fits
the data poorly), then αr will become quite large. We thus use these αr values to set
the ar weights on the incoming datapoints. For ar > ar−1, old data will be partially
forgotten since the incoming datapoint is being given greater weight. For technical
reasons, causal learning can fail if ar < ar−1. We thus set: ar+1 =Max(ar, αrbr).

3.3 Causal Model Learner (CML)
The CML module actually learns the causal model. Any causal model search algorithm
requires the sample size in addition to the estimated covariance matrix. For the TDSL
algorithm, different datapoints can receive different weights and so the number of data-
points is not necessarily the correct “effective sample size,” though that should never be
greater than the actual sample size. Let Sr be the sample size at time r. We assume the
incoming datapoint contributes 1 to the sample size, and adjust the previous sample size
accordingly. Specifically, we update Sr with the following rule: Sr+1 = ar

ar+1
Sr + 1.

Since LRE ensures that ar+1 ≥ ar for all r, we have that Sr+1 ≤ Sr + 1. Also, if
ar+1 = ar for all r, then Sr = r; that is, if the datapoint weights are constant, then Sr
is the true sample size.

CML uses a standard constraint-based causal structure learning algorithm, the PC
algorithm [2], to learn the graphical structure based on the estimated covariance ma-
trix (from OCME) and the effective sample size. Alternative constraint-based structure
learning algorithms could also be used. Because learning causal models is computa-
tionally expensive [9], one does not want to relearn the graphical structure after each
datapoint. Instead, one should use information from the LRE module to determine

2We define MTDL in terms of DM here, but it works with any univariate random variable.

6

when one “ought” to perform these searches by balancing the accuracy of the current
learned causal model against the computational cost of relearning the causal model.
Recall that αr denotes the current learning rate for the MTDL algorithm that is tracking
the Mahalanobis distance, and so will be small when the estimated covariance matrix
is judged to be approximately correct. Let γα denote the sum of the absolute changes
in the αr values since the last graph relearning. We then use a probabilistic scheduler
in which

P (relearning after datapoint r) = gamcdf(γα, k2, θ2)

Immediately after a change occurs in the underlying causal structure, the Mahalanobis
distance will be largest, and so the αr values will quickly grow. Observing additional
datapoints from the new structure will allow for better predictions, and αr will quickly
become small again. Both types of movement will inflate γα substantially. As a result,
graph relearning should be most common after an underlying change, though there
should be a non-zero chance of relearning even when the causal structure is relatively
stable. This performance of the probabilistic scheduler is confirmed in the third set of
simulations below.

4 Simulation Results
We used synthetic data to evaluate the performance of TDSL given known ground
truth. All simulations used scenarios in which either the ground truth parameters or
ground truth graph (and parameters) changed during the course of data collection. Be-
fore the first change occurs, there should be no significant difference between TDSL
and a standard batch-mode learner, since those datapoints are completely i.i.d. Per-
formance on these datapoints thus provides information about the performance cost (if
any) of online learning using TDSL, relative to traditional algorithms. After a change-
point, one is interested both in the absolute performance of TDSL (i.e., can it track
the changes?) and in its performance relative to a standard batch-mode algorithm (i.e.,
what performance gain does it provide?). We used the PC algorithm [2] as our baseline
batch-mode learning algorithm; for the graph and sample sizes in our simulations, any
standard causal model learning algorithms would perform similarly.

In order to directly compare the performance of TDSL and PC, the first two sets
of simulations imposed a fixed “graph relearning” schedule on TDSL3; the probabilis-
tic relearning schedule is explored in the third set of simulations. In the first set of
simulations, we used datasets with 2000 datapoints, where the causal SEM graph and
parameters both changed after the first 1000 datapoints. We generated 500 datasets
for each 〈#variables,MaxDegree〉 of 〈4, 3〉, 〈8, 3〉, 〈10, 3〉, 〈10, 7〉, 〈15, 4〉, 〈15, 9〉,
〈20, 5〉, and 〈20, 12〉, where each dataset had two different, randomly generated causal
SEMs of the specified size and degree.

Figures 2(a-c) show the mean edge addition, removal, and orientation errors (re-
spectively) by TDSL as a function of time, and Figures 2(d-f) show the mean of

3TDSL relearned graphs and PC was rerun after datapoints
{25, 50, 100, 200, 300, 500, 750, 1000, 1025,
1050, 1100, 1200, 1300, 1500, 1750, 2000}.

7

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-c) TDSL errors and (d-f) TDSL improvement over batch when structure
changes

#errorsPC − #errorsTDSL for each error type (i.e., higher numbers imply TDSL
outperforms PC). In all graphs, each 〈variable, degree〉 pair is a distinct line. As ex-
pected, TDSL was basically indistinguishable from PC for the first 1000 datapoints; the
lines for those datapoints in Figures 2(d-f) are all essentially zero. After the underlying
causal SEM changes, however, there are significant differences. The PC algorithm per-
forms quite poorly because the full dataset is essentially a mixture from two different
distributions which induces a large number of spurious associations. In contrast, the
TDSL algorithm finds large Mahalanobis distances for those datapoints, which lead
to higher weights, which lead it to learn (approximately) the new underlying causal
model. In practice, TDSL typically stabilized on a new causal model by roughly 250
datapoints after the changepoint.

The second set of simulations was identical to the first (500 runs each for various
pairs of variable number and edge degree), except that the graph was held constant
throughout and only the causal SEM parameters changed after 1000 datapoints. Figures
3(a-c) and 3(d-f) report, for these simulations, the same measures as Figures 2(a-c)
and 2(d-f). Again, TDSL and PC performed basically identically for the first 1000
datapoints. Performance after the parameter change did not follow the same pattern as
before, however. TDSL again does much better on edge addition and orientation errors,
but performed worse on the edge removal errors for the first 400 points following the
change. The reason is that TDSL weights the new data very heavily immediately after
the changepoint, which reduces the effective sample size. As a result, TDSL initially
finds more independencies than are correct. Over the course of the 1000 datapoints,

8

(a) (b) (c)

(d) (e) (f)

Figure 3: (a-c) TDSL errors and (d-f) TDSL improvement over batch when parameters
change

however, TDSL converges towards the correct new parameters, and so outperforms PC
on all measures.

The third set of simulations was designed to explore in detail the performance of
the probabilistic relearning scheduler. We randomly generated a single dataset with
10,000 datapoints, where the underlying causal SEM graph and parameters changed
after every 1000 datapoints. Each causal SEM had 12 variables and maximum degree
of 4. We then ran TDSL with the probabilistic relearning schedule 500 times on this
dataset. Figure 4(a) shows the (observed) expected number of “relearnings” in each
50-datapoint window. As expected, there are substantial relearning peaks after each
structure shift, and the expected number of relearnings persisted at roughly 0.4 per 50
datapoints throughout the 1000-datapoint stable period. Figures 4(b-d) provide error
information: the smooth green lines indicate the mean edge addition, removal, and
orientation errors (respectively) during learning, and the blocky blue lines indicate the
TDSL errors if graph relearning occurred after every datapoint (i.e., optimal TDSL
performance). Although there are many fewer graph relearnings with the probabilistic
schedule, overall errors did not significantly increase.

5 Discussion and Future Research
While the TDSL algorithm does not assume that the data are globally i.i.d., it clearly
will work only for data that are ”locally” i.i.d. If the underlying causal structure
changes very rapidly during data collection, or if the datapoints are a random-order

9

(a) (b)

(c) (d)

Figure 4: (a) TDSL expected relearnings for 50-point window; (b-d) errors and optimal
performance

10

mixture from multiple causal structures, then the TDSL algorithm will continually have
high Mahalanobis distance in the LRE module, and so high learning rates in the OCME
module. As a result, the overall algorithm is unlikely to stabilize for any length of time
on a particular causal structure. An important future research direction is to determine
how to have TDSL efficiently track smoothly or rapidly varying causal structures.

The TDSL algorithm also allows theoretically for the possibility that the current
learned causal model can be used to influence the ar weights. If there are certain
causal connections that have not changed over a long period of time, or have been
stable over multiple relearnings, then one might plausibly conclude that those connec-
tions are stable and less likely to change. Thus, much greater error should be required
to substantially change the estimates for those connections. In practice, implementing
this intuition requires allowing for the ar weights to vary across 〈Vi, Vj〉 pairs. The
mathematics of the OCME become much more complicated when this is allowed, and
much more information must be tracked. It is currently unknown whether the (pre-
sumably) improved tracking would compensate for the additional computational and
memory cost.

We have focused on causal models represented by SEMs, but there is also a long
history of successful causal modeling using causal Bayes nets defined over discrete
variables with conditional probability tables. Tracking the sufficient statistics for causal
Bayes net structure learning is substantially more costly, and we are currently inves-
tigating ways to learn the necessary information in a tractable, online fashion. Simi-
larly, we have focused on constraint-based structure learning since the relevant scores
in score-based methods (such as [3]) do not decompose in a manner that is suitable
for online learning. We are thus investigating alternative scores, as well as heuristic
approximations to principled score-based search.

There are many real-world contexts in which batch-mode causal structure learning
is either infeasible or inappropriate. The online causal structure learning algorithm that
we presented has great potential to perform well in a range of challenging contexts, and
at little cost in “traditional” settings.

References
[1] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.

[2] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT
Press, 2nd edition, 2000.

[3] D. M. Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3:507–554, 2002.

[4] D. Heckerman, C. Meek, and G. Cooper. A bayesian approach to causal discovery.
In C. Glymour and G. Cooper, editors, Computation, Causation, and Discovery,
pages 141–165. MIT Press, 1999.

[5] R. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44, 1988.

11

[6] R. P. Adams and D. J. C. MacKay. Bayesian online changepoint detection. Tech-
nical report, University of Cambridge, Cambridge, UK, 2007. arXiv:0710.3742v1
[stat.ML].

[7] F. Desobry, M. Davy, and C. Doncarli. An online kernel change detection algo-
rithm. IEEE Transactions on Signal Processing, 8:2961–2974, 2005.

[8] P. C. Mahalanobis. On the generalized distance in statistics. Proceedings of the
National Institute of Sciences of India, 2:49–55, 1936.

[9] D. M. Chickering. Learning Bayesian networks is NP-complete. In Proceedings
of AI and Statistics, 1995.

12

