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1 Introduction

Academic superstars are a familiar phenomenon. These scientists write the
papers that everyone reads and talks about, they make media appearances,
give presidential addresses, and they win grants and awards. The work of
an academic superstar generally attracts more attention than that of the
average scientist.

Quantifying attention as the number of citations to their papers, sociol-
ogists found an easy way to identify academic superstars. They also noted
that superstars are rare: the vast majority of scientists receives no more than
a handful of citations, while a rare few get extremely many (Price 1965, Cole
1970). In particular, the distribution of citations follows a “power law”: the
number of papers that gets cited n times is proportional to n−α for some α.
Redner (1998) estimates α to be around three.
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The standard explanation for this characteristic power law pattern in
the literature relies on so-called preferential attachment models. Preferential
attachment models are network formation models in which new nodes link
to older nodes with probabilities proportional to the number of links that
older node already has. It can be shown that this generates a power law
distribution of links with an exponent equal to three (Barabási and Albert
1999). Interpreting nodes as papers and links as citations creates a close
match between empirically observed citation patterns and those predicted
by preferential attachment.

A strength of this explanation is its ability to match the observed distri-
bution of citations very closely. A weakness is that it gives no insight as to
why scientists would choose to cite papers according to this pattern.

Here I offer an alternative model in which the content of papers plays
an explicit role in scientists’ decision whether to read or cite it. I set aside
various biases that scientists might have in choosing what to read or cite and
instead view these decisions purely as an information exchange. My goal is
to show that this factor by itself is sufficient to produce the citation patterns
that may be seen in real life. In particular, my aim is to establish something
like the following claim.

Claim 1. If, in choosing whose work to read, scientists are motivated only
by gathering as much information as possible given their means, then the
patterns of interaction that emerge are highly imbalanced: some scientists
get a lot of attention, while most get very little.

Insofar as I succeed in establishing this claim, it shows that scientists’
desire for information (which is surely one of scientists’ many motivations)
can work as a mechanism that leads to the existence of academic super-
stars. As such it can be an alternative to preferential attachment models
or supplement them. A key strength of the present model is that it offers
some limited insight into the question which papers become highly cited and
which do not, a question on which preferential attachment models are com-
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pletely silent (the initial differences in citations among papers are generated
completely randomly in such models).

From a technical perspective, the model I present is a strategic network
formation model in the style of Jackson and Wolinsky (1996) and Bala and
Goyal (2000). In those early network formation models, nodes are distin-
guished only by the characteristics they have relative to the network (i.e.,
their links and their neighbors’ links). The “information” being transmitted
between the nodes takes the form of deterministic, additive “bits”, of which
each node has exactly one. Following Anderson (2016) I allow some het-
erogeneity between nodes. In Anderson’s model each node possesses some
subset of the finite set of bits of information (called “skills” by Anderson)
available in the model. I generalize this further by allowing information to
take the form of sets of random variables, interpreted as experiments that
scientists would like to learn the outcome of. This constitutes the main
technical innovation achieved here.

The model is described in section 2.1. The next two sections explore some
specific features of the model. Section 2.2 defines a notion that allows one
to compare the information each scientist has access to, and proves that this
notion works for its intended purpose. Section 2.3 builds on this to define the
relative frequencies of information in a scientific community. Two assump-
tions concerning the behavior of scientists are stated in section 2.4, along
with some considerations of why these assumptions might be acceptable as
a form of bounded rationality. The main result, which substantiates claim 1,
is then proved in section 2.5.

As a further defense of the two assumptions made in section 2.4, I prove
that Bayesian scientists will satisfy them under certain conditions. Sec-
tion 3.1 introduces the extra machinery I need. Section 3.2 proves a theorem
related to the first assumption, and section 3.3 does the same for the second
assumption.
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2 A Network Formation Model with Hetero-
geneous Nodes and Stochasticity

2.1 The Model: Scientists, Worlds, and Information

The goal of this model is to capture important aspects of the way scientists
exchange information. This goal has guided the assumptions to be stated in
the following.

Let I be a set of scientists. Let Ω be a set of possible worlds the scientists
may find themselves in. Ω may be of arbitrary cardinality. Think of I as
being either finite or countably infinite. I will make more specific assumptions
on the size of I along the way.

Suppose that there are m types of experiments that might be performed.
Whenever an experiment is performed this generates some data. Suppose
that these data can be summarized by some number or vector Xj. The
possible values of Xj are elements of the set Xj (j = 1, . . . ,m).

Each scientist i ∈ I has an information set Ai which contains the infor-
mation i has gathered through experimentation. i has done experiment j
some (finite) number of times, call this number n(i, j). Thus Ai contains
n(i, j) realizations of Xj for each j. I will write this as follows:

Ai := {Xj,i,k | 1 ≤ j ≤ m, 1 ≤ k ≤ n(i, j)}

= {X1,i,1, . . . , X1,i,n(i,1), X2,i,1, . . . , X2,i,n(i,2), . . . , Xm,i,1, . . . , Xm,i,n(i,m)},

where Xj,i,k is scientist i’s k-th realization of experiment j. The scientists
are assumed to view the realizations associated with a given experiment j as
identically distributed random variables: Xj,i,k ∼ Xj for all i and k. The idea
is that scientists are interested in finding out which possible world they are in,
and observing the random variables in information sets provides information
that is relevant to this goal. It is clear that the function n(i, ·) characterizes
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the amount of information in the set Ai by specifying how many of each type
of random variable it contains (of course n(i, ·) does not specify the content
of the information, only the amount).

Call the set of all information sets for a given set of scientists I AI :

AI := {Ai | i ∈ I}.

Definition 2 (scientific community). A scientific community C = (I, AI) is
an ordered pair consisting of a set of scientists I and the set of information
sets associated with the scientists in I.

Finally, assume that scientists are able to form one-way connections such
that if a scientist connects to another scientist, she obtains the information in
that other scientist’s information set (but no other information, and the other
scientist does not receive her information). There may be a cost associated
with forming a connection (this will be made explicit in section 3.1).

A connection reflects one scientist learning the results of another scien-
tist’s experiments. The paradigm case I have in mind is reading those results
in a paper published by the other scientist (but it may also reflect, e.g., an
oral transfer of information).

I will assume that every scientist knows who has done what experiment
how many times (i.e., every scientist knows n(i, j) for all i and j). So when a
scientist is considering to connect to another scientist she knows in advance
which random variables she will learn the value of by making this connection.

2.2 Comparing Information Sets: a Simple Abstrac-
tion

I mentioned that an information set Ai is characterized by the number of
realizations n(i, j) of each experiment j that it contains. This section explores
that idea. In particular, I want to have a way of talking about larger and
smaller information sets.
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When talking about finite sets, the notions of larger and smaller are cap-
tured by the subset relation. Unfortunately these notions cannot be applied
directly in the framework I have set up. For example, consider scientist i,
whose information set contains one realization each of experiments 1 and 2:

Ai = {X1,i,1, X2,i,1},

and scientist i′, whose information set contains two realizations each of ex-
periments 1 and 2:

Ai′ = {X1,i′,1, X1,i′,2, X2,i′,1, X2,i′,2}.

I want to say that Ai is a subset of Ai′ , but by the definition of subset this
is not true, because the elements of Ai, X1,i,1 and X2,i,1, do not occur in
Ai′ . However, the elements of Ai have natural equivalents in Ai′ : X1,i′,1 and
X2,i′,1.

Thus, from the standpoint of a third scientist considering to connect to
i or i′, the two random variables in Ai are equivalent to the two singled-out
random variables from Ai′ , in the sense that a priori the information they
will provide is indistinguishable for the third scientist. Since Ai′ contains
additional information in the form of two more random variables, the third
scientist should prefer to connect to i′ rather than i.

To make these ideas more precise, it would be useful to have a notion
of information set that abstracts away from particular instances of random
variables, but focuses instead on the amount of information contained in
them. For this purpose, I propose to call two random variables equivalent if
they only differ in their second index (which specifies which scientist did the
experiment and is as such irrelevant to the amount of information contained
in the random variable). This allows me to define a more abstract notion
of information set containing equivalence classes of random variables rather
than the random variables themselves.
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Definition 3 (equivalent random variables). Two random variables Xj,i,k

and Xj′,i′,k′ are equivalent if j = j′ and k = k′. Define the associated equiv-
alence classes as follows:

Xj,k := {Xj,i,k | i ∈ I}.

Definition 4 (abstracted information sets). An abstracted information set
[Ai] contains the equivalence classes of the random variables contained in the
information set Ai. That is, for any i ∈ I:

[Ai] := {Xj,k | Xj,i,k ∈ Ai} = {X1,1, . . . , X1,n(i,1), . . . , Xm,1, . . . , Xm,n(i,m)}.

Thus by looking at [Ai] one can tell how many realizations of each of
the m experiments are in Ai, without referring to their specific realizations.
The following proposition and its corollary show that the normal notions
of set containment and set equality, applied to abstracted information sets,
accurately capture the amount of information in an information set.

Proposition 5. For all i, i′ ∈ I:

[Ai] ⊆ [Ai′ ]⇔ n(i, j) ≤ n(i′, j),∀j ∈ {1, . . . ,m}.

Proof. (⇒) Assume [Ai] ⊆ [Ai′ ]. Let j ∈ {1, . . . ,m} be any of the types of
experiments. The set [Ai] contains Xj,1, . . . , Xj,n(i,j). Therefore the set [Ai′ ]
contains Xj,1, . . . , Xj,n(i,j). By definition [Ai′ ] contains Xj,1, . . . , Xj,n(i′,j). But
these facts are consistent only if n(i, j) ≤ n(i′, j).

(⇐) Assume n(i, j) ≤ n(i′, j) for all j ∈ {1, . . . ,m}. Let Xj,k ∈ [Ai].
Then k ≤ n(i, j) ≤ n(i′, j). Therefore Xj,k ∈ [Ai′ ]. So [Ai] ⊆ [Ai′ ].

Corollary 6. For all i, i′ ∈ I:

[Ai] = [Ai′ ]⇔ n(i, j) = n(i′, j),∀j ∈ {1, . . . ,m}.
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This corollary, which follows immediately from proposition 5, expresses
the idea that two information sets Ai and Ai′ contain essentially the same
information (at least from the viewpoint of a third scientist considering to
connect to i or i′) if they contain the same number of realizations of each
experiment.

The following two propositions show that the other standard set-theoretic
relations (set union and intersection) also have sensible interpretations when
applied to abstracted information sets.

Proposition 7. For all i, i′, i′′ ∈ I:

[Ai′′ ] = [Ai] ∪ [Ai′ ]⇔ n(i′′, j) = max{n(i, j), n(i′, j)},∀j ∈ {1, . . . ,m}.

Proof. (⇒) Assume [Ai′′ ] = [Ai] ∪ [Ai′ ]. Let j ∈ {1, . . . ,m}. Since [Ai′′ ]
contains anything that is contained in either [Ai] or [Ai′ ], it must contain
Xj,n(i,j) and Xj,n(i′,j). So [Ai′′ ] contains Xj,max{n(i,j),n(i′,j)}. But [Ai′′ ] does not
contain Xj,max{n(i,j),n(i′,j)}+1 because that is not contained in either [Ai] or
[Ai′ ]. So n(i′′, j) = max{n(i, j), n(i′, j)}.

(⇐) Assume n(i′′, j) = max{n(i, j), n(i′, j)} for all j ∈ {1, . . . ,m}. Let
Xj,k ∈ [Ai′′ ]. Then k ≤ n(i′′, j) = max{n(i, j), n(i′, j)}. So either k ≤ n(i, j)
or k ≤ n(i′, j) (or both). In the former case Xj,k ∈ [Ai], while in the latter
Xj,k ∈ [Ai′ ]. But then certainly Xj,k ∈ [Ai] ∪ [Ai′ ]. So [Ai′′ ] ⊆ [Ai] ∪ [Ai′ ].

Now let Xj,k ∈ [Ai] ∪ [Ai′ ]. Then either Xj,k ∈ [Ai] or Xj,k ∈ [Ai′ ] (or
both). In the former case k ≤ n(i, j) ≤ max{n(i, j), n(i′, j)} = n(i′′, j), while
in the latter k ≤ n(i′, j) ≤ max{n(i, j), n(i′, j)} = n(i′′, j). So Xj,k ∈ [Ai′′ ].
So [Ai] ∪ [Ai′ ] ⊆ [Ai′′ ]. Together with [Ai′′ ] ⊆ [Ai] ∪ [Ai′ ] this yields [Ai′′ ] =
[Ai] ∪ [Ai′ ].

Proposition 8. For all i, i′, i′′ ∈ I:

[Ai′′ ] = [Ai] ∩ [Ai′ ]⇔ n(i′′, j) = min{n(i, j), n(i′, j)},∀j ∈ {1, . . . ,m}.

The proof is essentially the same as for the previous proposition.
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2.3 Relative Frequency of Information

Assuming that I is finite, the relative frequency of an abstracted information
set can be straightforwardly defined.

Definition 9 (relative frequency of information). A function q describes the
relative frequency of information in a scientific community C = (I, AI) (I will
abbreviate this as “C satisfies q”) if for any abstracted information set [A]

q([A]) = |{i ∈ I | [Ai] = [A]}|
|I|

.

For a given [A], q([A]) clearly expresses the proportion of scientists in
I whose abstracted information set is equal to [A]. Let [AI ] be the set of
abstracted information sets occurring in the set of scientists I:

[AI ] := {[Ai] | i ∈ I}.

Then

q([A]) ≥ 0 for any [A],

q([A]) > 0 if and only if [A] ∈ [AI ],∑
[A]∈[AI ]

q([A]) = 1.

So any q that satisfies the above definition for some scientific community C
is indeed a frequency distribution.

Note that if only finite sets of scientists are considered, the relative
frequency of any abstracted information set must be a rational number
(q([A]) ∈ Q for all [A]). Also, only finitely many abstracted information
sets can have positive relative frequency ([AI ] has finite size). When in sub-
sequent sections I prove results “for all relative frequencies q” this should be
understood as referring to any function q that satisfies the above definition
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for at least one scientific community C consisting of finitely many scientists.
Note also that if at least one scientific community satisfies q, infinitely

many will do so (since any integer number of copies of the same commu-
nity may together form a larger community that also satisfies q). Moreover,
communities satisfying q may then have arbitrarily large sets of scientists I
associated with them (by the same argument). This is important for the
argument in subsequent sections.

2.4 Assumptions Concerning the Behavior of Scien-
tists

Assume that the distribution of information q is given. I am interested in the
connections that will form between the scientists. In order to prove anything
about these, I will need some assumptions. I could do this by specifying the
decision problem the scientists face and making assumptions about how they
solve it. That is the approach I will take in chapter 3.

However, in this section I will only assume that each scientist i has some-
how obtained a (sequential) decision procedure δCi . δCi specifies which scien-
tists i connects to as a function of C, i.e., as a function of the set of available
scientists I and their information sets AI . As decisions are allowed to be
made sequentially, the n + 1-st connection made under δCi is also a function
of the information obtained from the information sets of the first n scientists
i connects to.

Taking the decision procedure δCi to be fixed, a given decision to connect
is a function of the information gained through previous connections. Since
that information takes the form of random variables, decisions to connect
may themselves be viewed as random. This is the significance of statements
I will make in the rest of this chapter about the probability of connecting
to a given scientist, the probability of connecting to a certain number of
scientists, or the expected number of connections.

These probabilistic statements take as fixed the set of scientists and the
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abstracted information set of each scientist (i.e., information about how many
of each type of experiment each scientist has done), while they take as ran-
dom the actual realizations of these random variables. So these probabilities
reflect the assessment that a third-party observer would make before any con-
nections are formed, knowing the experiments that each scientist has done,
but not the outcomes of these experiments.

The decision procedures scientists follow may be arbitrarily good or bad
(relative to the unspecified decision problem). In this section I will only give
some minimal constraints on δCi . These minimal behavioral assumptions turn
out to be sufficient for the main result, theorem 13.

In a slight abuse of notation, I use δCi to denote both i’s decision procedure
and the total number of connections that i makes. The latter is a random
variable, taking values in the non-negative integers, because it depends (in
general) on the information obtained through the process.

Let δCi,[A] denote the number of scientists with abstracted information set
[A] that i connects to. Obviously, δCi,[A] is also a random variable and δCi,[A] is
related to δCi :

δCi =
∑

[A]∈[AI ]
δCi,[A], and therefore

δCi,[A] ≤ δCi for all [A].

In the following I state two assumptions that are used in the main result
in the next section. The first assumption says that scientists are unlikely
to connect to a very large number of scientists with the same abstracted
information set. Moreover, the rate at which the probability for a large
number of connections drops off is similar for each scientist, and similar
regardless of how many scientists are available to connect to (similar enough
that the rate can be uniformly bounded).

Assumption 10 (Uniformly Bounded Connection Probabilities). For any
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relative frequency q, abstracted information set [A], and ε > 0, there exists
N[A],ε such that for all n > N[A],ε, for all C that satisfy q and for all i ∈ I, if
Pr
(
δCi,[A] ≥ 1

)
> 0 then

nPr
(
δCi,[A] ≥ n | δCi,[A] ≥ 1

)
≤ ε.

A simple scenario where this assumption holds is when the number of
connections is uniformly bounded almost surely (i.e., there exists an N such
that for all C satisfying q and for all i ∈ I Pr

(
δCi ≥ N

)
= 0). This condition

is sufficient for assumption 10. So if there is reason to believe that there is a
number such that no scientist could benefit from making more connections
than that number then assumption 10 is justified.

A slightly less simple scenario where this assumption is justified is when
scientists behave like Bayesian statisticians and they all have the same loss
function: in this case their optimal decision procedures will be identical.
Section 3.3 will makes this more precise.

The following lemma can now be proved. It says that as the size of the
set of scientists I gets large, the probability that a scientist i connects to all
q([A]) · |I| scientists with abstracted information set [A] gets small relative to
the expected number of connections to scientists with abstracted information
set [A]. This result is important for the proof of theorem 13, in fact it is only
via lemma 11 that assumption 10 is used in the proof.

Lemma 11. Assume that scientists behave according to assumption 10. For
any relative frequency q and abstracted information set [A] there exists N[A]

such that for all C satisfying q with |I| > N[A], for all i ∈ I:

q([A]) · |I|Pr
(
δCi,[A] ≥ q([A]) · |I|

)
≤ 1

2E
[
δCi,[A]

]
.

Moreover, the inequality is strict for any i ∈ I satisfying E
[
δCi,[A]

]
> 0.

Proof. Let [A] be an abstracted information set. If q([A]) = 0 the desired
inequality holds because both sides are zero. Assume q([A]) > 0. For N[A]
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choose the value N[A],1/4/q([A]) (where N[A],1/4 is N[A],ε as defined in assump-
tion 10 for the value ε = 1/4). Let I be a set of scientists such that I ⊂q I∞
and |I| > N[A]. Let i ∈ I be a scientist. Distinguish two cases:

1. E
[
δCi,[A]

]
> 0. Since δCi,[A] is a nonnegative, integer-valued random

variable, this is equivalent to Pr
(
δCi,[A] ≥ 1

)
> 0. Since q([A]) · |I| > N[A],1/4,

it follows from assumption 10 that

q([A]) · |I|Pr
(
δCi,[A] ≥ q([A]) · |I| | δCi,[A] ≥ 1

)
≤ 1

4 <
1
2 .

By the definition of conditional probability this can also be written as

q([A]) · |I|Pr
(
δCi,[A] ≥ q([A]) · |I|

)
<

1
2 Pr

(
δCi,[A] ≥ 1

)
.

Markov’s inequality yields

Pr
(
δCi,[A] ≥ 1

)
≤ E

[
δCi,[A]

]
.

Combining the last two inequalities gives the desired (strict) inequality.
2. E

[
δCi,[A]

]
= 0. Since δCi,[A] is a nonnegative random variable, it follows

that Pr
(
δCi,[A] ≥ n

)
= 0 for all n > 0. In this case the desired inequality must

hold because both sides are equal to zero.

The second assumption says that scientists will not connect to someone
with strictly less information than someone else.

Assumption 12 (Never Consider Subsets). A scientist will not connect to
a second scientist i whenever a third scientist i′ is available to connect to and
[Ai] ⊂ [Ai′ ] (i.e., [Ai] ⊆ [Ai′ ] and [Ai] 6= [Ai′ ]).

This assumption is plausible if each random variable in an information
set gives independently valuable information. In such cases scientists behav-
ing optimally will satisfy this assumption. Section 3.2 will make this more
precise by giving conditions under which there is an optimal procedure for
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each scientist satisfying this assumption and giving (only slightly stronger)
conditions under which all optimal procedures satisfy this assumption.

2.5 The Main Result: Supermodular In-Degrees

Consider the network formed by viewing the set of scientists as a set of nodes
and drawing a (directed) edge between i and i′ if i connects to i′. The in-
degree of a scientist i′ in a given network, denoted d(i′), is the number of
scientists connecting to i′:

d(i′) := |{i ∈ I | i connects to i′}|.

This number can be viewed as a measure of the prominence of an individual
scientist in the community.

Since the scientists’ decision procedures may depend on the information
they gather as they go along, in general it does not follow with certainty from
δCi whether or not i will connect to a given i′. But δCi specifies how likely it is
that i will connect to i′ (as a function of the probability distributions on the
information sets). So one can define the notion of the expected in-degree of a
scientist (where the expectation is relative to the probabilities of connecting
induced by the decision procedures δCi ):

E [d(i′)] :=
∑
i∈I

Pr
(
i connects to i′ | δCi

)
.

The use of the sum over i in this definition is unproblematic because each
of the probabilities in the sum are independent. This is because i’s decision
procedure δCi is not allowed to depend on other scientists’ connections: it
depends only on the scientists that are available to connect to and their
information sets.

Let [A] ∈ [AI ] be an abstracted information set. The number of connec-
tions formed to scientists with abstracted information set [A] is of course
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∑
i′∈I:[Ai′ ]=[A]

d(i′)

If C satisfies the relative frequency q there are q([A]) · |I| scientists with
abstracted information set [A]. Therefore the average in-degree among such
scientists is simply the above sum divided by q([A]) · |I|. I will use this as a
definition of the in-degree of an arbitrary scientist with abstracted informa-
tion set [A]:

d([A]) := 1
q([A]) · |I|

∑
i′∈I:[Ai′ ]=[A]

d(i′).

But then the expected in-degree of an arbitrary scientist with abstracted
information set [A] is

E [d([A])] := 1
q([A]) · |I|

∑
i′∈I:[Ai′ ]=[A]

E [d(i′)]

= 1
q([A]) · |I|

∑
i′∈I:[Ai′ ]=[A]

∑
i∈I

Pr
(
i connects to i′ | δCi

)

= 1
q([A]) · |I|

∑
i∈I

∑
i′∈I:[Ai′ ]=[A]

Pr
(
i connects to i′ | δCi

)

= 1
q([A]) · |I|

∑
i∈I

E
[
δCi,[A]

]
, (1)

where δCi,[A] is the number of scientists with abstracted information set [A]
that i connects to, as discussed in section 2.4. Note that the latter two
definitions are only meaningful if q([A]) > 0. Define d([A]) and E[d([A])] to
be zero whenever q([A]) = 0.

The sense in which the scientist discussed above is arbitrary is that if
you collected all the scientists with abstracted information set [A] together
and drew one of them at random the above is the expected in-degree of that
randomly drawn scientist. Moreover if scientists are indifferent whether they
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connect to one scientist or another whenever they have the same abstracted
information set (as Bayesian scientists minimizing their risk function would
be, see lemma 21) and break such ties by choosing randomly which scientist
with the same abstracted information set to connect to, then E [d([A])] =
E [d(i′)] for all scientists i′ with abstracted information set [A]. In this case
the expected in-degree is the same for all scientists with the same abstracted
information set and E [d([A])] measures the prominence in the community
of scientists with abstracted information set [A]. Even if this is not the
case, however, E [d([A])] is useful as a measure of the average prominence of
scientists as a function of their abstracted information set [A].

With all of this in place, I can now state the main theorem. It states that
if the set of scientists is sufficiently large, the expected prominence of a given
scientist increases rapidly (faster than linearly) in the size of her information
set.

Theorem 13. For any relative frequency q there exists a number N such that
for all communities C satisfying q and assumptions 10 and 12, if |I| > N

then for all abstracted information sets [A] and [B] with q([A] ∪ [B]) > 0

E [d([A] ∪ [B])] + E [d([A] ∩ [B])] ≥ E [d([A])] + E [d([B])] .

If the sets involved are distinct (that is, neither [A] nor [B] is equal to [A] ∪
[B]) then this can be strengthened to

E [d([A] ∪ [B])] ≥ E [d([A])] + E [d([B])] .

And if in addition E [d([A] ∪ [B])] > 0 then this can be further strengthened
to

E [d([A] ∪ [B])] > E [d([A])] + E [d([B])] .

Proof. Let q be a relative frequency. Recall from section 2.3 that only finitely
many abstracted information sets can have positive relative frequency un-
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der q. Choose

N = max
[A]:q([A])>0

N[A],

where N[A] is as defined in lemma 11. Let C be a scientific community sat-
isfying q and assumptions 10 and 12. Assume that |I| > N and let [A] and
[B] be any two abstracted information sets such that q([A] ∪ [B]) > 0.

As in the statement of the theorem, I distinguish two cases: either (1) at
least one of the sets [A] or [B] is equal to [A] ∪ [B], or (2) both [A] and [B]
are proper subsets of [A] ∪ [B]. I will prove the theorem for the two cases
separately.

1. Assume without loss of generality that [A] = [A] ∪ [B]. It follows
that [A] ∩ [B] = ([A] ∪ [B]) ∩ [B] = [B]. So E [d([A])] = E [d([A] ∪ [B])] and
E [d([B])] = E [d([A] ∩ [B])]. The result follows immediately (in this case
there is equality between the two sides).

2. For the second case it is assumed that [A] ⊂ [A] ∪ [B] and [B] ⊂
[A] ∪ [B]. If q([A]) > 0 I can use equation (1) to get a formula for E[d([A])]:

E [d([A])] = 1
q([A]) · |I|

∑
i∈I

∑
i′∈I:[Ai′ ]=[A]

Pr
(
i connects to i′ | δCi

)
.

Since [A] ⊂ [A] ∪ [B], assumption 12 applies. This says scientist i ∈ I will
not connect to scientist i′ (with [Ai′ ] = [A]) as long as there are scientists
with abstracted information set [A] ∪ [B] available to connect to. So i may
connect to i′ only if she has connected to all q([A] ∪ [B]) · |I| scientists with
abstracted information set [A] ∪ [B]:

Pr
(
i connects to i′ | δCi

)
≤ Pr

(
δCi,[A]∪[B] ≥ q([A] ∪ [B]) · |I|

)
,

where δCi,[A]∪[B] represents the number of scientists with abstracted informa-
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tion set [A] ∪ [B] that i connects to. Applying this to E [d([A])] yields

E [d([A])] = 1
q([A]) · |I|

∑
i∈I

∑
i′∈I:[Ai′ ]=[A]

Pr
(
i connects to i′ | δCi

)

≤ 1
q([A]) · |I|

∑
i∈I

∑
i′∈I:[Ai′ ]=[A]

Pr
(
δCi,[A]∪[B] ≥ q([A] ∪ [B]) · |I|

)
=
∑
i∈I

Pr
(
δCi,[A]∪[B] ≥ q([A] ∪ [B]) · |I|

)
, (2)

where the final equality follows because the probabilities in the sum do not
depend on i′ and the inner sum contains q([A]) · |I| terms.

Inequality (2) has been obtained under the assumption that q([A]) > 0,
but the bound on E[d([A])] is true when q([A]) = 0 as well: in that case
E[d([A])] = 0, which is clearly no bigger than a sum of probabilities.

Because [B] ⊂ [A] ∪ [B], an analogous argument (which, for the reason
just given, works regardless of whether q([B]) > 0 or q([B]) = 0) allows me
to bound E[d([B])]:

E [d([B])] ≤
∑
i∈I

Pr
(
δCi,[A]∪[B] ≥ q([A] ∪ [B]) · |I|

)
. (3)

Since assumption 10 is satisfied and |I| > N ≥ N[A]∪[B] all of the condi-
tions of lemma 11 are satisfied. Hence, for all i ∈ I,

q([A] ∪ [B]) · |I|Pr
(
δCi,[A]∪[B] ≥ q([A] ∪ [B]) · |I|

)
≤ 1

2E
[
δCi,[A]∪[B]

]
, (4)

where the inequality is strict for any i ∈ I satisfying E
[
δCi,[A]∪[B]

]
> 0. By

the definition of E [d([A] ∪ [B])] (per equation (1)):

E [d([A] ∪ [B])] = 1
q([A] ∪ [B]) · |I|

∑
i∈I

E
[
δCi,[A]∪[B]

]
.
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If E [d([A] ∪ [B])] > 0 it follows that E
[
δCi,[A]∪[B]

]
> 0 for at least one i ∈ I.

Together with inequality 4 this yields

E [d([A] ∪ [B])] ≥ 2
∑
i∈I

Pr
(
δCi,[A]∪[B] ≥ q([A] ∪ [B]) · |I|

)
,

where the inequality is strict if E [d([A] ∪ [B])] > 0. Combining this result
with inequalities (2) and (3) obtained above gives:

E [d([A] ∪ [B])] ≥ E [d([A])] + E [d([B])] .

The inequality is strict whenever E [d([A] ∪ [B])] > 0, as required.

There are some limitations to this result. Scientists have to behave in
accordance with assumptions 10 and 12 (although assumption 10 is only
used through lemma 11). And the distribution of information q needs to be
kept constant as I increases in size: it is easy to construct an example where
the result fails for any finite I if abstracted information sets can become
increasingly rare as I gets bigger.

2.6 A Corollary: Exponential In-Degrees

Theorem 13 shows that expected in-degree is a supermodular function of the
size of a scientist’s information set. As I alluded to, supermodularity can be
thought of as “faster than linear”. This section makes this more precise. I
prove a corollary to theorem 13 that shows that, in “dense” scientific commu-
nities, expected in-degree increases exponentially as the size of a scientist’s
information set increases.

Recall that scientist i’s abstracted information set [Ai] contains n(i, j)
equivalence classes of random variables for each experiment j. Let E be
some subset of the experiments and let n̂[Ai]

E = min{n(i, j) | j ∈ E}, i.e., n̂[Ai]
E

is the lowest number of times any of the experiments in E was performed by
scientist i. Equivalently, n̂[Ai]

E is the largest number such that each experiment

19



in E was performed at least n̂[Ai]
E times by scientist i.

Let q be a relative frequency. As before, let [AI ] be the set of abstracted
information sets that have positive relative frequency under q. Define

n̂E = max
[A]∈[AI ]

n̂
[A]
E .

So n̂E denotes the largest number such that a scientific community satisfy-
ing q contains at least one scientist who has performed each experiment in E
at least n̂E times.

Suppose scientist i has performed each experiment in E at least once and
at most n̂E times, but has performed no other experiments, i.e., 1 ≤ n(i, j) ≤
n̂E if j ∈ E and n(i, j) = 0 if j /∈ E. As a result, there are n̂|E|E possible
abstracted information sets this scientist might have. I will say a relative
frequency is “dense” if all of these combinations occur in it with positive
frequency.

Assumption 14 (dense relative frequency). A relative frequency q (or a
scientific community C satisfying q) is dense relative to a subset of the exper-
iments E if for any combination of numbers n1, . . . , nm (where 1 ≤ nj ≤ n̂E

if j ∈ E and nj = 0 if j /∈ E) there is an abstracted information set [Ai] such
that q([Ai]) > 0 and n(i, j) = nj for all j.

Let [AE(n)] denote the abstracted information set containing exactly n
realizations of each experiment in E, and no other experiments. The following
result, a corollary of theorem 13, shows that the expected prominence of
a scientist with abstracted information set [AE(n)] increases exponentially
with n.

Corollary 15. Let q be any relative frequency and E any subset of experi-
ments with |E| > 1. There exists a number N such that for all communities
C satisfying q and assumptions 10, 12 and 14, if |I| > N then for all n (with
1 ≤ n ≤ n̂E)

20



E [d([AE(n̂E)])] ≥ 2(n̂E−n)(|E|−1)E [d([AE(n)])] ≥ 2(n̂E−1)(|E|−1)E [d([AE(1)])] .

Proof. It suffices to show that under the conditions stated,

E [d([AE(n)])] ≥ 2|E|−1E [d([AE(n− 1)])]

for all 2 ≤ n ≤ n̂E: the result then follows by iteratively applying this
inequality.

Label the experiments in E as 1, 2, . . . , |E|. Write [AE] for [AE(n)], i.e.,
the abstracted information set where each experiment in E is performed n

times. For any F ⊂ E, write [AF ] for the abstracted information set where
each experiment in F is performed n times and each experiment in E \ F is
performed n− 1 times. Note that with this notation [A∅] = [AE(n− 1)] and
for any nonempty F , [A∅] ⊂ [AF ] ⊂ [AE] by proposition 5. Consider [AE\{1}]
and [AE\{2}]. By proposition 7,

[AE] = [AE\{1}] ∪ [AE\{2}].

By assumption 14, q([AE]) > 0. Hence, theorem 13 applies, yielding

E [d([AE])] ≥ E
[
d([AE\{1}])

]
+ E

[
d([AE\{2}])

]
.

If |E| = 2 this finishes the proof because E[d([AE\{1}])] ≥ E[d([A∅])] and
E[d([AE\{2}])] ≥ E[d([A∅])], and hence

E [d([AE])] ≥ 2E [d([A∅])] .

If |E| > 2 the same strategy can be applied again. By proposition 7,
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[AE\{1}] = [AE\{1,2}] ∪ [AE\{1,3}],

[AE\{2}] = [AE\{1,2}] ∪ [AE\{2,3}].

By assumption 14, q([AE\{1}]) > 0 and q([AE\{2}]) > 0, and hence by theo-
rem 13

E [d([AE])] ≥ E
[
d([AE\{1}])

]
+ E

[
d([AE\{2}])

]
≥ 2E

[
d([AE\{1,2}])

]
+ E

[
d([AE\{1,3}])

]
+ E

[
d([AE\{2,3}])

]
≥ 4E [d([A∅])] .

In general, this strategy can be repeated |E| − 1 times, taking out one per-
formance of an experiment each time and doubling the number of terms in
the sum, yielding

E [d([AE])] ≥ 2|E|−1E [d([A∅])] .

3 When Bayesian Scientists Satisfy the As-
sumptions

3.1 A Sequential Decision Problem

So far I have showed that under two assumptions concerning the behavior of
scientists, the links formed by scientists in my model display a certain asym-
metry: a few scientists get contacted many times, while most get contacted
zero or few times. I argued that the two behavioral assumptions are plausible
if scientists are at least somewhat rational (see section 2.4).

Now I will instead assume that scientists are fully rational Bayesian statis-
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ticians. By showing that such scientists satisfy the two behavioral assump-
tions of section 2.4 (given some conditions), I prove that the links formed by
these fully rational scientists display the same asymmetry.

Let C = (I, AI) be a scientific community and let Ω be the set of possible
worlds the scientists may find themselves in. Let Ξ denote the set of all pos-
sible probability distributions defined on some suitable σ-field W of subsets
of Ω. So for each ξ ∈ Ξ, ξ : W → [0, 1] is a probability function and the
triple (Ω,W , ξ) is a probability space.

I will use ξ ∈ Ξ to denote an individual scientist’s subjective assessment
at a given time of how likely it is that she is in a given (set of) world(s). If the
scientist learns some information she updates her subjective beliefs by Bayes
conditioning. Let ξ(A1, . . . , An) denote the probability measure obtained by
Bayes conditioning ξ with respect to the random variables in the information
sets A1, . . . , An. Note that ξ(A1, . . . , An) ∈ Ξ.

Recall that AI = {Ai | i ∈ I} is the set of information sets, with

Ai = {Xj,i,k | 1 ≤ j ≤ m, 1 ≤ k ≤ n(i, j)}.

Each random variable Xj,i,k represents a realization of experiment j, so it
follows some given distribution Xj with possible outcomes Xj. At some
points, I will make an additional assumption to the effect that any collection
of realizations of experiment j forms an i.i.d. dataset given any relevant set of
possible worlds, and independent of the realizations of the other experiments.

Definition 16 (simple scientific community). Call the scientific community
C = (I, {Ai | i ∈ I}) simple relative to a probability space P = (Ω,W , ξ) if
for all W ∈ W Xj,i,k is independent of Xj′,i′,k′ given W unless i = i′, j = j′,
and k = k′ (conditional independence) and Xj,i,k|W ∼ Xj|W (conditional
identical distributions).

This does not and should not deny that the distributions Xj may depend
on the possible world the scientist is in: presumably the purpose of gathering
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data is to learn about what type of world she is in.
The scientists face the following sequential decision problem: they have to

choose some decision from a set of options D. In an epistemological context
a simple example would be “announce what possible world you are in” but
in general the relation between D and Ω may be more complicated. D may
be different for each scientist, but I will not emphasize this fact by putting
an index on D.

Before scientists make their decision they are allowed to connect to other
scientists in I. Connecting to a scientist i costs c for each connection, but
yields all of the information in i’s information set Ai. This is a so-called “one
way, one pays” link: the scientist who pays c receives the data obtained from
any experiments the other scientist has done, but the scientist who does not
pay receives no new information.

Definition 17 (decision problems and procedures). A decision problem
D = (C, D) is an ordered pair consisting of a scientific community C and
a set D of terminal decisions. A (sequential) decision procedure δ for D is
a function that outputs a sequence i1, i2, . . . of members of I and a terminal
decision dδ ∈ D. in+1 may depend on the information in the information sets
Ai1 , . . . , Ain . dδ may depend on Ai1 , Ai2 , . . .. Let ∆D denote the set of all
decision procedures for D.

Before moving on I give two side remarks on the nature of the sequential
decision problem. First, because scientists receive only one information set by
connecting (not the data the other scientist has obtained by connecting to yet
other scientists) and are not affected by who connects to them, an individual
scientist’s performance is not affected by other scientists’ strategy. So I do
not need to use full-blown game theory; individual decision theory suffices.

Second, this is a sequential decision problem because I assume a scientist
can connect to a scientist and see the information in her information set
before deciding whether to connect to another scientist.
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Next, I need to introduce a way of evaluating the outcome of the se-
quential decision problem. This will depend on the loss associated with the
terminal decision and the cost of connecting.

Definition 18 (sequential risk function). Let P be a probability space and D
a decision problem. Let `(w, d) be the loss associated with terminal decision
d ∈ D in world w ∈ Ω. The risk of an immediate decision is defined (relative
to P) as

ρ0(ξ, d) =
∫

Ω
`(w, d) dξ(w)

for all d ∈ D.
Let c > 0. Then the risk under loss ` and cost of connecting c is defined

(relative to P) as

ρ(ξ, δ) = E [ρ0(ξ(Ai1 , Ai2 , . . . , Aiδ), dδ) + cδ] (5)

for all δ ∈ ∆D (where, as before, δ is used to denote the number of connections
made under procedure δ).

So the prior risk associated with a procedure δ is the expected risk of an
immediate decision relative to the subjective beliefs the scientist will have
after she finished connecting, plus c times the number of connections made.
ξ, `, ρ0, and ρmay be different for each scientist, but as withD I will suppress
this fact notationally.

3.2 Existence and Properties of the Optimal Proce-
dure

Let ∆D denote the set of all possible sequential decision procedures that a
given scientist could follow when faced with the type of problem I described
in section 3.1. Chow and Robbins (1963) prove that this set contains an
optimal procedure.
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Theorem 19 (Chow and Robbins (1963)). Let P = (Ω,W , ξ) be a probability
space and D = (C, D) a decision problem. Let ρ be a risk function (specified
relative to P for a given loss function ` and cost of connecting c > 0). Then
there exists a δ∗ ∈ ∆D such that

ρ(ξ, δ∗) = inf
δ∈∆D

ρ(ξ, δ).

The proof is rather long and can be found in Chow and Robbins (1963,
section 2). A proof for the specific case that I am considering, and using the
same notation that I use, is in DeGroot (2004, section 12.9).

Let B be an information set. If a scientist with prior ξ learns the informa-
tion in B she updates to ξ(B). As noted above, ξ(B) ∈ Ξ, so (Ω,W , ξ(B))
can be used as the probability space in the theorem above. So by the theo-
rem there exists an optimal procedure in ∆D for a scientist with prior ξ(B).
Let δDB ∈ ∆D denote such an optimal procedure (this is a random variable
because B is random). This procedure is optimal for decision problem D rel-
ative to prior ξ(B). An optimal procedure relative to ξ can then be written
δD∅ , since ξ conditioned on an empty information set is equal to ξ.

Now I will prove an elementary result about the value of information due
to Good (1967). The result guarantees that getting free information never
makes a scientist worse off, and gives a necessary and sufficient condition
under which the information actually makes her better off.

Theorem 20 (Good (1967)). Let P = (Ω,W , ξ) be a probability space and
D = (C, D) a decision problem. Let ρ be a risk function (specified relative
to P for a given loss function ` and cost of connecting c > 0). Then the
optimal risk is at least as high as the expected optimal risk after conditioning
on some arbitrary information set B:

ρ
(
ξ, δD∅

)
≥ E

[
ρ
(
ξ(B), δDB

)]
.

The inequality is strict if and only if there is a set of possible outcomes for
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B with positive probability for which

ρ
(
ξ(B), δD∅

)
> ρ

(
ξ(B), δDB

)
,

i.e., if conditional on B δD∅ is no longer optimal.

Proof. Note first that the existence of δD∅ and δDB (for any realization of B)
is guaranteed by theorem 19.

Now observe that ρ(ξ, δD∅ ) =

= E
[
ρ0
(
ξ
(
A1, . . . , AδD

∅

)
, dδD

∅

)
+ cδD∅

]
(definition of ρ(ξ, δD∅ ))

= E
[
E
[
ρ0
(
ξ
(
A1, . . . , AδD

∅

)
, dδD

∅

)
+ cδD∅ | B

]]
(iterated expectation)

= E
[
E
[
ρ0
(
ξ
(
A1, . . . , AδD

∅
, B
)
, dδD

∅

)
+ cδD∅

]]
(Bayesian updating)

= E
[
E
[
ρ0
(
ξ
(
B,A1, . . . , AδD

∅

)
, dδD

∅

)
+ cδD∅

]]
(conditioning commutes)

= E
[
ρ
(
ξ(B), δD∅

)]
. (definition of ρ(ξ(B), δD∅ ))

For a fixed realization of B, by definition of the infimum,

ρ
(
ξ(B), δD∅

)
≥ inf

δ∈∆
ρ(ξ(B), δ) = ρ

(
ξ(B), δDB

)
.

Putting these two together yields

ρ
(
ξ, δD∅

)
= E

[
ρ
(
ξ(B), δD∅

)]
≥ E

[
ρ
(
ξ(B), δDB

)]
as desired. It is now also obvious that the inequality above reduces to an
equality if and only if with probability one δD∅ is still an optimal procedure
after observing B. Otherwise the inequality is strict, yielding the condition
stated in the theorem.

Recall that section 2.2 defined two random variables to be equivalent
if they differ only in their second index (which specifies which scientist it
belongs to). This yields equivalence classes of random variables defined as
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follows: Xj,k := {Xj,i,k | i ∈ I}. The abstracted information set of a scien-
tist i, denoted [Ai], specifies i’s information through the associated equiva-
lence classes: [Ai] := {Xj,k | Xj,i,k ∈ Ai}.

Corollary 6 showed that two information sets contain the same number
of realizations of each experiment if and only if their associated abstracted
information sets are identical. Intuitively, this means that a scientist consid-
ering to connect to one of two such information sets should be indifferent:
the information she will obtain is a priori indistinguishable. The following
lemma makes this precise.

Lemma 21. Let P = (Ω,W , ξ) be a probability space and D = (C, D) a deci-
sion problem, with C simple relative to P. Let ρ be a risk function (specified
relative to P for a given loss function ` and cost of connecting c > 0). If two
information sets Ai and Ai′ are such that [Ai] = [Ai′ ] then the risk relative
to ξ(Ai) and the risk relative to ξ(Ai′) are the same in expectation for any
decision procedure. That is, for any δ ∈ ∆D:

E[ρ(ξ(Ai), δ)] + c = E[ρ(ξ(Ai′), δ)] + c.

Proof. Since [Ai] = [Ai′ ], by corollary 6, n(i, j) = n(i′, j) for all j. So Ai and
Ai′ contain the same number of random variables of each type j.

Let S := {Sj,k | Sj,k ⊆ Xj, 1 ≤ j ≤ m, 1 ≤ k ≤ n(i, j)} denote a set of
possible outcomes for Ai (by specifying a set of possible outcomes Sj,k for
each Xj,i,k ∈ Ai). Then S is also a set of possible outcomes for Ai′ (because
Ai′ contains the same number of each type of random variable).

Let W ∈ W . Because Xj,i,k | W ∼ Xj,i′,k | W for all relevant j and k it
follows that

Pr(Xj,i,k ∈ Sj,k | W ) = Pr(Xj,i′,k ∈ Sj,k | W )

for all relevant j and k. Therefore (using the conditional independence that
follows from C being simple):
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Pr(Ai ∈ S | W ) = Pr(Ai′ ∈ S | W ).

So Ai and Ai′ are identically distributed in all relevant sets of worlds. It
follows that ξ(Ai) = ξ(Ai′) whenever their realizations match (Xj,i,k = Xj,i′,k

for all relevant j and k). So the scientist learns from the information set Ai
in exactly the same way as she would from Ai′ . Moreover, by conditional
independence, what she learns from information sets she connects to in the
future is not affected either, i.e., for all δ,

ξ(Ai, A1, . . . , Aδ) = ξ(Ai′ , A1, . . . , Aδ)

whenever Xj,i,k = Xj,i′,k for all relevant j and k. The result follows.

It may be objected that the lemma assumes that the decision problem
faced by the scientist after connecting to i or i′ is the same, while in fact the
set of available information sets should be different: AI\{i} after connecting
to i as opposed to AI\{i′} after connecting to i′.

I argue that this does not actually matter: after connecting to i or i′ the
only difference in the resulting decision problems is whether i′ or i (respec-
tively) is still available to connect to, and the lemma guarantees that the
scientists views those two options as equivalent. So the lemma really does
say that a scientist should be indifferent between connecting to i and i′ when
[Ai] = [Ai′ ].

The following result is obtained using lemma 21 and theorem 20. It says
that connecting to an information set with more information instead of one
with less information never makes a scientist worse off, and gives a necessary
and sufficient condition such that it makes the scientist better off.

Theorem 22. Let P = (Ω,W , ξ) be a probability space and D = (C, D)
a decision problem, with C simple relative to P. Let ρ be a risk function
(specified relative to P for a given loss function ` and cost of connecting c >
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0). Suppose that i’s information set contains at least as much information
as i′’s: Ai ⊆ Ai′. Then

E
[
ρ
(
ξ(Ai), δDAi

)]
+ c ≥ E

[
ρ
(
ξ(Ai′), δDAi′

)]
+ c.

The inequality is strict if and only if there is a set of possible outcomes of Ai′
with positive probability such that if Xj,i,k = Xj,i′,k for all 1 ≤ j ≤ m and for
all 1 ≤ k ≤ n(i, j) (i.e., Ai matches Ai′ in their common part), δDAi is not
optimal when conditioning on Ai′:

ρ
(
ξ(Ai′), δDAi

)
> ρ

(
ξ(Ai′), δDAi′

)
.

Proof. First off, note that the existence of the optimal procedures δDAi ∈ ∆D
and δDAi′ ∈ ∆D is guaranteed by theorem 19 (for any possible realizations of
Ai and Ai′).

Next, define B as follows:

B := {Xj,i,k | 1 ≤ j ≤ m,n(i, j) < k ≤ n(i′, j)}

= {X1,i,n(i,1)+1, . . . , X1,i,n(i′,1), . . . , Xm,i,n(i,m)+1, . . . , Xm,i,n(i′,m)}.

So for each j, B contains n(i′, j)− n(i, j) (which is nonnegative by proposi-
tion 5) realizations of Xj and they are indexed such that Ai is disjoint from
B. In a sense, B contains the information that Ai is missing relative to Ai′ :
[Ai ∪B] = [Ai′ ]. So by lemma 21, for all δ ∈ ∆D:

E [ρ (ξ (Ai′) , δ)] + c = E [ρ (ξ (Ai ∪B) , δ)] + c.

It follows that the optimal risk should also be the same. So let δDAi∪B ∈
∆D denote the optimal procedure (which exists by theorem 19) relative to
ξ(Ai ∪B) given a realization of Ai ∪B, to get
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E
[
ρ
(
ξ (Ai′) , δDAi′

)]
+ c = E

[
ρ
(
ξ (Ai ∪B) , δDAi∪B

)]
+ c,

But of course conditioning on Ai ∪B is the same as conditioning first on Ai,
then on B: ξ(Ai ∪B) = ξ(Ai, B). Therefore

E
[
ρ
(
ξ (Ai ∪B) , δDAi∪B

)]
+ c = E

[
ρ
(
ξ (Ai, B) , δDAi∪B

)]
+ c.

Since δDAi∪B is optimal relative to the subjective probability ξ(Ai, B) and
δDAi is optimal relative to the subjective probability ξ(Ai), it follows from
theorem 20 that for a given realization of Ai

ρ
(
ξ (Ai) , δDAi

)
+ c ≥ E

[
ρ
(
ξ (Ai, B) , δDAi∪B

)
| Ai

]
+ c.

Here the expectation on the right-hand side is only with respect to B. The
inequality is strict whenever there is a set of possible outcomes for B with
positive probability for which δDAi is not an optimal procedure, given Ai.
Taking the expectation with respect to Ai yields:

E
[
ρ
(
ξ (Ai) , δDAi

)]
+ c ≥ E

[
E
[
ρ
(
ξ (Ai, B) , δDAi∪B

)
| Ai

]]
+ c

= E
[
ρ
(
ξ (Ai, B) , δDAi∪B

)]
+ c

= E
[
ρ
(
ξ (Ai′) , δDAi′

)]
+ c,

which is the desired inequality. The inequality is strict if and only if there
is a set of outcomes of Ai with positive probability for which there is a set
of outcomes of B with positive probability such that δDAi is not an optimal
procedure relative to ξ(Ai, B), i.e.,

ρ
(
ξ (Ai, B) , δDAi

)
> ρ

(
ξ (Ai, B) , δDAi∪B

)
,

which by lemma 21 is equivalent to there being a set of outcomes of Ai′ with
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positive probability such that if Ai matches Ai′ in their common part,

ρ
(
ξ (Ai′) , δDAi

)
> ρ

(
ξ (Ai′) , δDAi′

)
.

Again it may be objected that the theorem assumes that the decision
problem the scientist faces after the first connection is the same whether she
connects to i or i′, while in fact the problems differ: after connecting to i, i′

is still available to connect to and i is not, whereas after connecting to i′ the
situation is reversed.

But I claim that this is not a substantive assumption of the theorem.
Consider the following. If the scientist ends up connecting to both i and i′,
she ends up conditioning on Ai∪Ai′ and she is in the same situation whether
she connected to i or i′ first. If she connects to only one of them, the theorem
shows that connecting to i′ is at least as good as connecting to i, and the
omitted options are irrelevant because they are unused.

So the theorem shows that in any decision problem, if [Ai] ⊆ [Ai′ ], con-
necting to i′ is always at least as good as connecting to i, and strictly better
whenever [Ai] ⊂ [Ai′ ] and the extra information in Ai′ has any chance of
making a difference to future decisions. I take this to be a kind of justifi-
cation, within the Bayesian framework, of assumption 12, which says that
scientists will choose to connect to i′ rather than i whenever [Ai] ⊂ [Ai′ ].

3.3 Uniformly Bounded Connection Probabilities

In this section I compare the optimal procedures for different scientists in
different contexts (where the context is the set of scientists that are available
to connect to). I assume that all scientists are trying to solve the same
problem. In particular, each scientist has to choose a decision from the same
set D, they consider the same set of possible worlds Ω, they have the same
loss function `, before observing the information in their own information set
they have the same prior ξ ∈ Ξ, and they have the same cost of connecting
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c > 0.
Fix a relative frequency of information q. Then for any scientific commu-

nity C = (I, AI) satisfying q, the scientists that are available for any scientist
i ∈ I to connect to are given by the set I \ {i}. As before, ∆D denotes the
set of all sequential decision procedures available to i given decision problem
D = (C, D). So ∆D contains all procedures that specify which scientists in
I \ {i} to connect to (possibly as a function of the information gained from
previous connections) and which decision from D to choose after it stops
connecting.

As before, a Bayesian scientist should evaluate the risk of a sequential
decision procedure using the formula in equation (5). In particular, scientist
i ∈ I has initial information set Ai, and so her subjective beliefs are repre-
sented by ξ(Ai). Thus, she should evaluate the risk of any procedure δ ∈ ∆D
as ρ(ξ(Ai), δ).

By theorem 19, there exists an optimal procedure for scientist i. Following
the notation I used above, the optimal procedure for scientist i (i.e., the
optimal procedure relative to prior ξ(Ai)) is denoted by δDAi .

Now suppose that for every abstracted information set [A] that occurs in
the community (i.e., every [A] such that q([A]) > 0) there were an infinite
number of scientists with abstracted information set [A]. In particular, define
C∞ = (I∞, AI∞) such that for all [A]:

|{i ∈ I∞ | [Ai] = [A]}| =

∞ if q([A]) > 0,

0 if q([A]) = 0.

If i could connect to any scientist in the infinite set I∞ (other than herself),
the decision problem she faces is D∞ = (C∞, D). The set of all sequential
decision procedures is ∆D∞ , and the optimal procedure from that set is δD∞

Ai
.

As before, I will use δDAi to stand both for the sequential decision procedure
and the number of connections made by that procedure. For any abstracted
information set [A], δDAi,[A] denotes the number of connections made to scien-
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tists with abstracted information set [A] by procedure δDAi . In this section I
am interested in the probability that δDAi,[A] ≥ n for large n.

Assuming that the optimal risk is finite, the following result follows im-
mediately.

Lemma 23. Let P = (Ω,W , ξ) be a probability space, D a set, and ρ a
risk function (specified relative to P for a given loss function ` and cost of
connecting c > 0). Let q be a relative frequency, [A] an abstracted information
set, C = (I, AI) a scientific community such that either C satisfies q or
C = C∞, and D = (C, D) the associated decision problem. For all i ∈ I, if
Pr
(
δDAi,[A] ≥ 1

)
> 0 then

lim
n→∞

nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
= 0.

In other words, for all ε > 0 there is an NDi,[A],ε such that for all n > NDi,[A],ε

nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
≤ ε.

Proof. It follows immediately from equation (5) that

E
[
δDAi

]
≤ 1
c
· ρ
(
ξ(Ai), δDAi

)
<∞.

So the expected number of connections is finite. Since the expected number
of connections to scientists with abstracted information set [A] cannot be
higher than the expected total number of connections, it follows that it must
be finite as well: E

[
δDAi,[A]

]
<∞. Then it is easy to prove that

lim
n→∞

nPr
(
δDAi,[A] ≥ n

)
= 0.

So for all ε > 0 there is an M(ε) such that for all n > M(ε)

nPr
(
δDAi,[A] ≥ n

)
≤ ε.

From the assumption Pr
(
δDAi,[A] ≥ 1

)
> 0 it follows that for all ε > 0
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ε · Pr
(
δDAi,[A] ≥ 1

)
> 0.

The rest of the proof is straightforward. Let ε > 0. Choose NDi,[A],ε :=
M
(
ε · Pr

(
δDAi,[A] ≥ 1

))
. Let n > NDi,[A],ε. It follows that

nPr
(
δDAi,[A] ≥ n

)
≤ εPr

(
δDAi,[A] ≥ 1

)
.

And thus

nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
=
nPr

(
δDAi,[A] ≥ n

)
Pr
(
δDAi,[A] ≥ 1

) ≤ ε.

The above result is completely trivial for finite sets of scientists I, as
then there always exist n such that Pr

(
δDAi,[A] ≥ n

)
= 0 (namely any n such

that n > q([A]) · |I|). However, this lemma proves that the probability of a
large number of connections goes to zero relatively fast even when there are
infinitely many opportunities to connect.

This bound on the probability of a large number of connections may be
wildly different depending on the scientist i and on the community C that i
is a part of. The probability is bounded by ε only if n is larger than NDi,[A],ε.
What I would like is a uniform bound such that the probability is bounded
by ε for all i and C if n is larger than N[A],ε. Since there are infinitely many
possible scientists and sets of scientists it is not clear that I can simply take
the maximum over all i and C of all the NDi,[A],ε and get a finite number. The
rest of this section seeks to establish that this can be done.

Lemma 24. Let P = (Ω,W , ξ) be a probability space, D a set, and ρ a
risk function (specified relative to P for a given loss function ` and cost
of connecting c > 0). Let q be a relative frequency, i a scientist, [A] an
abstracted information set, and ε > 0. There exists an Ni,[A],ε satisfying
the following. Let n > Ni,[A],ε, let C = (I, AI) be a scientific community
satisfying q, and let D = (C, D) be the associated decision problem. If i ∈ I
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and Pr
(
δDAi,[A] ≥ 1

)
> 0 then

nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
≤ ε.

Proof. It follows from lemma 23 that for all decision problems D = (C, D)
with C satisfying q there exists an NDi,[A],ε such that the desired inequality
holds. This lemma shows that there is a finite Ni,[A],ε such that NDi,[A],ε ≤
Ni,[A],ε for all such D.

Let [A] be an abstracted information set and let i be a scientist. Consider
the community C[A] = (I[A] ∪ {i}, AI[A]∪{i}), where I[A] satisfies

∣∣∣{i′ ∈ I[A] | [Ai′ ] = [B]
}∣∣∣ =

∞ if [B] = [A],

0 if [B] 6= [A].

So C[A] is a community consisting, in addition to i, of infinitely many scientists
with abstracted information set [A].

Consider the decision problem D[A] = (C[A], D) faced by scientist i. By
theorem 19, there exists an optimal procedure δD[A]

Ai
∈ ∆D[A] . By lemma 23,

for all ε > 0 there is an ND[A]
i,[A],ε such that for all n > N

D[A]
i,[A],ε,

nPr
(
δ
D[A]
Ai,[A] ≥ n | δD[A]

Ai,[A] ≥ 1
)
≤ ε.

I claim that ND[A]
i,[A],ε, as just defined, serves as the desired finite bound.

Let n > N
D[A]
i,[A],ε. Let C = (I, AI) satisfy q and let D = (C, D) be the

associated decision problem. Assume that i ∈ I and Pr
(
δDAi,[A] ≥ 1

)
> 0.

Compare δDAi,[A] and δ
D[A]
Ai,[A]. These are each the optimal solution to the same

sequential decision problem, except that the sets of scientists available to
connect to are different. There are two differences between the sets I and I[A]:
(1) I contains a finite number of scientists with abstracted information set
[A], while I[A] contains an infinite number, and (2) I (potentially) contains
some scientists with abstracted information sets other than [A], while I[A]

does not. It follows that
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nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
≤ nPr

(
δ
D[A]
Ai,[A] ≥ n | δD[A]

Ai,[A] ≥ 1
)
≤ ε.

The first inequality holds for all n ∈ N, so certainly for all n > N
D[A]
i,[A],ε.

This inequality holds because whenever it is optimal to connect to more
scientists with abstracted information set [A] in the set of scientists I it must
also be optimal to do so in the set of scientists I[A]: the presence of extra
scientists with abstracted information set [A] cannot make it worse to connect
to more such scientists, and the absence of scientists with other abstracted
information sets similarly cannot make it worse to connect to more scientists
with abstracted information set [A].

With this lemma in hand I can prove the theorem of this section.

Theorem 25. Let P = (Ω,W , ξ) be a probability space, D a set, and ρ a
risk function (specified relative to P for a given loss function ` and cost of
connecting c > 0). For any relative frequency q, abstracted information set
[A], and ε > 0, there exists N[A],ε such that for all n > N[A],ε, if C = (I, AI)
is a scientific community satisfying q with C simple relative to P, D = (C, D)
the associated decision problem, i ∈ I a scientist, and Pr

(
δDAi,[A] ≥ 1

)
> 0,

then

nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
≤ ε.

Proof. It follows from lemma 24 that for all i there exists an Ni,[A],ε with
the desired properties. It remains to show that there exists an N[A],ε such
that Ni,[A],ε ≤ N[A],ε for any i that could potentially be part of a scientific
community satisfying q (i.e., any i such that q([Ai]) > 0).

Note first that for any i and i′ such that [Ai] = [Ai′ ] the optimal proce-
dures are closely related. If the realizations of the random variables in Ai and
Ai′ are the same (Xj,i,k = Xj,i′,k for all relevant j and k), then ξ(Ai) = ξ(Ai′)
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(compare the argument in the proof of lemma 21). In that case the two
scientists are facing exactly the same problem, so their optimal procedures
δDAi and δ

D
Ai′

are simply identical. But since the random variables in Ai and
Ai′ are identically distributed, the probability of any given realization is the
same. Thus by the law of total probability the overall probability of any
number of connections must be the same (since that probability equals the
conditional probability given some realization of Ai or Ai′ integrated over the
distribution of Ai or Ai′), i.e., for all [A] and for all n ∈ N

nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
= nPr

(
δDAi′ ,[A] ≥ n | δDAi′ ,[A] ≥ 1

)
.

So if i’s probabilities are bounded, i′’s must be bounded the exact same
way: Ni,[A],ε or Ni′,[A],ε can serve as a bound for either i or i′’s connection
probabilities. So Ni,[A],ε bounds the connection probabilities for all i′ such
that [Ai] = [Ai′ ].

Recall that q([A]) > 0 for only finitely many abstracted information sets
[A]. Let C ′ = (I ′, AI′) be a community that satisfies

|{i ∈ I ′ | [Ai′ ] = [A]}| =

1 if q([A]) > 0,

0 if q([A]) = 0.

So C ′ contains exactly one scientist with abstracted information set [A] for
each [A] such that q([A]) > 0. Thus

N[A],ε := max
i∈I′

Ni,[A],ε

is well-defined (because I ′ is a finite set). I claim that N[A],ε serves as the
desired bound.

Let n > N[A],ε, and let C = (I, AI) be a scientific community satisfying
q with C simple relative to P , D = (C, D) the associated decision problem,
i ∈ I a scientist, and Pr

(
δDAi,[A] ≥ 1

)
> 0. Since i is a member of C, which
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satisfies q, q([Ai]) > 0. So there exists i′ ∈ I ′ such that [Ai] = [Ai′ ]. Since
n > Ni′,[A],ε, by the foregoing argument

nPr
(
δDAi,[A] ≥ n | δDAi,[A] ≥ 1

)
= nPr

(
δDAi′ ,[A] ≥ n | δDAi′ ,[A] ≥ 1

)
≤ ε.

It is easy to further generalize this theorem by following a similar strategy
to the last step in the above proof. One generalization uses the fact that there
are only finitely many abstracted information sets [A] such that q([A]) > 0
to establish the existence of an Nε such that N[A],ε ≤ Nε for all [A]. Another
generalization notes that if there are finitely many different problems the
scientists are solving (finitely many different P , D, and ρ, instead of all these
things being the same for all scientists) the above theorem still holds.

The above theorem, however, is sufficient for my goal in this section.
That goal is to show that assumption 10 is satisfied by a group of scientists if
they are all solving the same problem and behave like Bayesian statisticians.
Theorem 25 shows exactly that. So assumption 10 is justified, within the
Bayesian framework, at least whenever all scientists are solving the same
problem.

Combining theorems 22 and 25 with theorem 13 yields the following re-
sult. If (1) scientists behave like Bayesian statisticians that are all solving
the same problem, (2) every piece of information is valuable (in the sense
of having a non-zero chance of changing future optimal decisions), and (3)
the population is large enough, then scientists’ expected in-degrees are a su-
permodular function of their information set. So one should expect large
differences in in-degree, and one should expect these differences to track the
amount of information a scientist has (such that more information means a
higher in-degree).
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